Category

Business Intelligence

Advice and opinion about the strategies, technologies and products that allow you to turn your enterprise data and knowledge into a powerful strategic weapon. Topics range from master data management strategies to CRM solutions.

Jul 212016
 
Call for Papers - Cognitive Computing: The Future Has Arrived!

In the 1980s, everyone got excited about the possibility of artificial intelligence. The excitement grew for a few years and then gradually faded as companies found that it was too hard to build and maintain useful expert systems or natural language interfaces. However, there has been a renewed interest in developing software applications that can interact with people in natural languages, perform complex decision-making tasks, or assist human experts in complex analysis efforts. Today these systems are called cognitive computing systems or machine learning. They rely on research from artificial intelligence laboratories and use new techniques like deep learning and reinforcement which seem to overcome some of the problems that were encountered with earlier AI Read more

Jun 142016
 
How to Architect a Data Lake

“How do you architect a lake?” If the question sounds like the opening line of a joke, the answer would clearly come as: “You don’t. You can only discover one.” Whether it is data warehouses or marts, data lakes, or reservoirs, the IT industry has a penchant for metaphor. The subliminal images conjured in the human mind by the above terms are, in my opinion, of critical importance in guiding thinking about the fundamental meanings and architectures of these constructs. Thus, a data warehouse is a large, cavernous, but well-organized location for gathering and storing data prior to its final use and a place where consumers are less than welcome for fear of being knocked Read more

Apr 052016
 
Protecting Your Sensitive Data During a Security Breach

At the recent RSA Security Conference in San Francisco, data-centric security and protection received a lot of attention. Several trends account for this. The main one, of course, is the large number of high-profile data breaches and other cyber attacks continually making the news — a trend that shows no sign of subsiding. In addition to this constantly lurking threat, we can add growing compliance and regulatory requirements as well as the advent of new (difficult to protect) technologies, applications, and architectures. Throw in all the revelations about hacking by various government intelligence services, and it’s easy to see why organizations and security solutions providers have made data-centric security and protection a top priority. The Read more

Mar 282016
 
Call for Papers: Big Data Analytics Success Hinges on the Four "Ps" — Preparation, People, Prediction, Production

Analytics — deep, predictive, operational, (insert preferred flavor here) — has climbed to the top of business executives wish lists in the past few years. The explosion of big data from social media sources and the coming supernova from the Internet of Things promises complete understanding of customer needs as well as the prediction/influencing of future behavior. With sufficient data, best of breed algorithms, faster computers, and emerging deep learning approaches — statistical correlation will become a largely exact science. Understanding causation will become an unnecessary luxury. Welcome to the analytics nirvana. Of course, inspiration and implementation often diverge. The day-to-day practicality of big data analytics continues to raise ongoing challenges. The “P-words” — preparation, people, prediction, and production point Read more

Jun 302015
 
The Data Lake as an Exploration Platform

The data lake is an attractive use case for enterprises seeking to capitalize on Hadoop’s big data processing capabilities. This is because it offers a platform for solving a major problem affecting most organizations: how to collect, store, and assimilate a range of data that exists in multiple, varying, and often incompatible formats strung out across the organization in different sources and file systems. In the data lake scenario, Hadoop serves as a repository for managing multiple kinds of data: structured, unstructured, and semistructured. But what do you do with all this data once you get it into Hadoop? After all, unless it is used to gain some sort of business value, the data lake Read more

Feb 242015
 
The Evolving Science of Computational Creativity

Innovation has become accepted as central to competitiveness in today’s world, both in new product development and in enhancement of internal processes. Companies struggle with innovation, and there have been numerous attempts to regularize and program it. But the development of truly breakthrough ideas is difficult, and recognizing them when they do arrive can be harder still. We have processes available for vetting ideas and passing them through a series of increasingly selective gateways until they reach the point of usefulness or are discarded altogether. But we do not have good processes for stitching together new ideas and reaching that eureka moment that says a critical new idea has been found. Some of the ways Read more

Feb 102015
 
Big Data and the Mirror of Erised

“This mirror will give us neither knowledge or truth.” So says Dumbledore in J.K. Rowling’s book, Harry Potter and the Sorcerer’s Stone, commenting on a mirror that shows us what our most desperate desires want us to see. This is an apt analogy when describing the analytics available in big data solutions. When you suddenly have all the data you could want and can quickly analyze it anyway you like, unencumbered by extraneous effort that we have historically had to endure, what happens? Being human beings with a tendency to confirm what we so want to have happen or to relive what felt so good in the past, managers often drift into self-sealing and circular analysis Read more